114 research outputs found

    On the Throughput Allocation for Proportional Fairness in Multirate IEEE 802.11 DCF

    Full text link
    This paper presents a modified proportional fairness (PF) criterion suitable for mitigating the \textit{rate anomaly} problem of multirate IEEE 802.11 Wireless LANs employing the mandatory Distributed Coordination Function (DCF) option. Compared to the widely adopted assumption of saturated network, the proposed criterion can be applied to general networks whereby the contending stations are characterized by specific packet arrival rates, λs\lambda_s, and transmission rates RdsR_d^{s}. The throughput allocation resulting from the proposed algorithm is able to greatly increase the aggregate throughput of the DCF while ensuring fairness levels among the stations of the same order of the ones available with the classical PF criterion. Put simply, each station is allocated a throughput that depends on a suitable normalization of its packet rate, which, to some extent, measures the frequency by which the station tries to gain access to the channel. Simulation results are presented for some sample scenarios, confirming the effectiveness of the proposed criterion.Comment: Submitted to IEEE CCNC 200

    On The Linear Behaviour of the Throughput of IEEE 802.11 DCF in Non-Saturated Conditions

    Full text link
    We propose a linear model of the throughput of the IEEE 802.11 Distributed Coordination Function (DCF) protocol at the data link layer in non-saturated traffic conditions. We show that the throughput is a linear function of the packet arrival rate (PAR) λ\lambda with a slope depending on both the number of contending stations and the average payload length. We also derive the interval of validity of the proposed model by showing the presence of a critical λ\lambda, above which the station begins operating in saturated traffic conditions. The analysis is based on the multi-dimensional Markovian state transition model proposed by Liaw \textit{et al.} with the aim of describing the behaviour of the MAC layer in unsaturated traffic conditions. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed linear model.Comment: To appear on IEEE Communications Letters, November 200

    A Model of the IEEE 802.11 DCF in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, specially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station.Comment: Accepted for oral presentation to IEEE Globecom 2007, Washington D.C., November 200

    On the Behavior of the Distributed Coordination Function of IEEE 802.11 with Multirate Capability under General Transmission Conditions

    Full text link
    The aim of this paper is threefold. First, it presents a multi-dimensional Markovian state transition model characterizing the behavior of the IEEE 802.11 protocol at the Medium Access Control layer which accounts for packet transmission failures due to channel errors modeling both saturated and non-saturated traffic conditions. Second, it provides a throughput analysis of the IEEE 802.11 protocol at the data link layer in both saturated and non-saturated traffic conditions taking into account the impact of both the physical propagation channel and multirate transmission in Rayleigh fading environment. The general traffic model assumed is M/M/1/K. Finally, it shows that the behavior of the throughput in non-saturated traffic conditions is a linear combination of two system parameters; the payload size and the packet rates, λ(s)\lambda^{(s)}, of each contending station. The validity interval of the proposed model is also derived. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed models.Comment: Submitted to IEEE Transactions on Wireless Communications, October 21, 200

    Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200

    Saturation Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a saturation throughput analysis of the IEEE 802.11 protocol at the data link layer by including the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture effects, specially in an environment of high interference, become important in terms of the actual observed throughput. As far as the 4-way handshaking mechanism is concerned, we extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel. This way, any channel model characterizing the physical transmission medium can be accommodated, including AWGN and fading channels. We also extend the Markov model in order to consider the behavior of the contention window when employing the basic 2-way handshaking mechanism. Under the usual assumptions regarding the traffic generated per node and independence of packet collisions, we solve for the stationary probabilities of the Markov chain and develop expressions for the saturation throughput as a function of the number of terminals, packet sizes, raw channel error rates, capture probability, and other key system parameters. The theoretical derivations are then compared to simulation results confirming the effectiveness of the proposed models.Comment: To appear on IEEE Transactions on Communications, 200

    Current updates on naturally occurring compounds recognizing sars-cov-2 druggable targets

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified in China as the etiologic agent of the recent COVID-19 pandemic outbreak. Due to its high transmissibil-ity, this virus quickly spread throughout the world, causing considerable health issues. The scientific community exerted noteworthy efforts to obtain therapeutic solutions for COVID-19, and new scientific networks were constituted. No certified drugs to efficiently inhibit the virus were identified, and the development of de-novo medicines requires approximately ten years of research. Therefore, the repurposing of natural products could be an effective strategy to handle SARS-CoV-2 infection. This review aims to update on current status of the natural occurring compounds recognizing SARS-CoV-2 druggable targets. Among the clinical trials actually recruited, some natural compounds are ongoing to examine their potential role to prevent and to treat the COVID-19 infection. Many natural scaffolds, including alkaloids, terpenes, flavonoids, and benzoquinones, were investigated by in-silico, in-vitro, and in-vivo approaches. Despite the large data set obtained by a computational approach, experimental evidences in most cases are not available. To fill this gap, further efforts to validate these results are required. We believe that an accurate investigation of naturally occurring compounds may provide insights for the potential treatment of COVID-19 patients
    • …
    corecore